Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(18): 4322-4326, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37132594

RESUMO

Poly(amidoamine) (PAMAM) dendrimers are used to modify the interface of metal-semiconductor junctions. The large number of protonated amines contributes to the formation of a dipole layer, which finally serves to form electron-selective contacts in silicon heterojunction solar cells. By modification of the work function of the contacts, the addition of the PAMAM dendrimer interlayer quenches Fermi level pinning, thus creating an ohmic contact between the metal and the semiconductor. This is supported by the observation of a low contact resistivity of 4.5 mΩ cm2, the shift in work function, and the n-type behavior of PAMAM dendrimer films on the surface of crystalline silicon. A silicon heterojunction solar cell containing the PAMAM dendrimer interlayer is presented, which achieved a power conversion efficiency of 14.5%, an increase of 8.3% over the reference device without the dipole interlayer.

2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834505

RESUMO

High open-circuit voltage in Sb2Se3 thin-film solar cells is a key challenge in the development of earth-abundant photovoltaic devices. CdS selective layers have been used as the standard electron contact in this technology. Long-term scalability issues due to cadmium toxicity and environmental impact are of great concern. In this study, we propose a ZnO-based buffer layer with a polymer-film-modified top interface to replace CdS in Sb2Se3 photovoltaic devices. The branched polyethylenimine layer at the ZnO and transparent electrode interface enhanced the performance of Sb2Se3 solar cells. An important increase in open-circuit voltage from 243 mV to 344 mV and a maximum efficiency of 2.4% was achieved. This study attempts to establish a relation between the use of conjugated polyelectrolyte thin films in chalcogenide photovoltaics and the resulting device improvements.


Assuntos
Intoxicação por Cádmio , Óxido de Zinco , Humanos , Elétrons , Polímeros , Planeta Terra
3.
ACS Appl Mater Interfaces ; 11(26): 23659-23666, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180626

RESUMO

Low-power, high-performance metal-insulator-metal (MIM) non-volatile resistive memories based on HfO2 high- k dielectric are fabricated using a drop-on-demand inkjet printing technique as a low-cost and eco-friendly method. The characteristics of resistive switching of Pt (bottom)/HfO2/Ag (top) stacks on Si/SiO2 substrates are investigated in order to study the bottom electrode's interaction with the HfO2 dielectric layer and the resulting effects on resistive switching. The devices show low Set and Reset voltages, high ON/OFF current ratio, and relatively low switching current (∼1 µA), which are comparable to the characteristics of current commercial CMOS memories. In order to understand the resistive switching mechanism, direct structural observation is carried out by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM) on cross-sectioned samples prepared by focused ion beam (FIB). In addition, electron energy loss spectroscopy (EELS) inspections discard a silver electro-migration effect.

4.
Beilstein J Nanotechnol ; 9: 1501-1511, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977683

RESUMO

Phosphorus- and boron-doped silicon nanocrystals (Si NCs) embedded in silicon oxide matrix can be fabricated by plasma-enhanced chemical vapour deposition (PECVD). Conventionally, SiH4 and N2O are used as precursor gasses, which inevitably leads to the incorporation of ≈10 atom % nitrogen, rendering the matrix a silicon oxynitride. Alternatively, SiH4 and O2 can be used, which allows for completely N-free silicon oxide. In this work, we investigate the properties of B- and P-incorporating Si NCs embedded in pure silicon oxide compared to silicon oxynitride by atom probe tomography (APT), low-temperature photoluminescence (PL), transient transmission (TT), and current-voltage (I-V) measurements. The results clearly show that no free carriers, neither from P- nor from B-doping, exist in the Si NCs, although in some configurations charge carriers can be generated by electric field ionization. The absence of free carriers in Si NCs ≤5 nm in diameter despite the presence of P- or B-atoms has severe implications for future applications of conventional impurity doping of Si in sub-10 nm technology nodes.

5.
Sci Rep ; 7(1): 8337, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827565

RESUMO

Boron (B) doping of silicon nanocrystals requires the incorporation of a B-atom on a lattice site of the quantum dot and its ionization at room temperature. In case of successful B-doping the majority carriers (holes) should quench the photoluminescence of Si nanocrystals via non-radiative Auger recombination. In addition, the holes should allow for a non-transient electrical current. However, on the bottom end of the nanoscale, both substitutional incorporation and ionization are subject to significant increase in their respective energies due to confinement and size effects. Nevertheless, successful B-doping of Si nanocrystals was reported for certain structural conditions. Here, we investigate B-doping for small, well-dispersed Si nanocrystals with low and moderate B-concentrations. While small amounts of B-atoms are incorporated into these nanocrystals, they hardly affect their optical or electrical properties. If the B-concentration exceeds ~1 at%, the luminescence quantum yield is significantly quenched, whereas electrical measurements do not reveal free carriers. This observation suggests a photoluminescence quenching mechanism based on B-induced defect states. By means of density functional theory calculations, we prove that B creates multiple states in the bandgap of Si and SiO2. We conclude that non-percolated ultra-small Si nanocrystals cannot be efficiently B-doped.

6.
Sci Rep ; 7(1): 863, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408757

RESUMO

Phosphorus doping of silicon nanostructures is a non-trivial task due to problems with confinement, self-purification and statistics of small numbers. Although P-atoms incorporated in Si nanostructures influence their optical and electrical properties, the existence of free majority carriers, as required to control electronic properties, is controversial. Here, we correlate structural, optical and electrical results of size-controlled, P-incorporating Si nanocrystals with simulation data to address the role of interstitial and substitutional P-atoms. Whereas atom probe tomography proves that P-incorporation scales with nanocrystal size, luminescence spectra indicate that even nanocrystals with several P-atoms still emit light. Current-voltage measurements demonstrate that majority carriers must be generated by field emission to overcome the P-ionization energies of 110-260 meV. In absence of electrical fields at room temperature, no significant free carrier densities are present, which disproves the concept of luminescence quenching via Auger recombination. Instead, we propose non-radiative recombination via interstitial-P induced states as quenching mechanism. Since only substitutional-P provides occupied states near the Si conduction band, we use the electrically measured carrier density to derive formation energies of ~400 meV for P-atoms on Si nanocrystal lattice sites. Based on these results we conclude that ultrasmall Si nanovolumes cannot be efficiently P-doped.

7.
Nanoscale ; 6(24): 14971-83, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25363292

RESUMO

In this work we apply low-loss electron energy loss spectroscopy (EELS) to probe the structural and electronic properties of single silicon nanocrystals (NCs) embedded in three different dielectric matrices (SiO2, SiC and Si(3)N(4)). A monochromated and aberration corrected transmission electron microscope has been operated at 80 kV to avoid sample damage and to reduce the impact of radiative losses. We present a novel approach to disentangle the electronic features corresponding to pure Si-NCs from the surrounding dielectric material contribution through an appropriate computational treatment of hyperspectral datasets. First, the different material phases have been identified by measuring the plasmon energy. Due to the overlapping of Si-NCs and dielectric matrix information, the variable shape and position of mixed plasmonic features increases the difficulty of non-linear fitting methods to identify and separate the components in the EELS signal. We have managed to solve this problem for silicon oxide and nitride systems by applying multivariate analysis methods that can factorize the hyperspectral datacubes in selected regions. By doing so, the EELS spectra are re-expressed as a function of abundance of Si-NC-like and dielectric-like factors. EELS contributions from the embedded nanoparticles as well as their dielectric surroundings are thus studied in a new light, and compared with the dielectric material and crystalline silicon from the substrate. Electronic properties such as band gaps and plasmon shifts can be obtained by a straightforward examination. Finally, we have calculated the complex dielectric functions and the related electron effective mass and density of valence electrons.

8.
Nanoscale ; 4(5): 1620-6, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22286103

RESUMO

For good performance of photonic devices whose working principle is based on the enhancement of electromagnetic fields obtained by confining light into dielectric resonators with dimensions in the nanometre length scale, a detailed knowledge of the optical mode structure becomes essential. However, this information is usually lacking and can only be indirectly obtained by conventional spectroscopic techniques. Here we unraveled the influence of wire size, incident wavelength, degree of polarization and the presence of a substrate on the optical near fields generated by cavity modes of individual hexagonal ZnO nanowires by combining scanning near-field optical microscopy (SNOM) with electrodynamics calculations within the discrete dipole approximation (DDA). The near-field patterns obtained with very high spatial resolution, better than 50 nm, exhibit striking size and spatial-dispersion effects, which are well accounted for within DDA, using a wavevector-dependent dipolar interaction and considering the dielectric anisotropy of ZnO. Our results show that both SNOM and DDA simulations are powerful tools for the design of optoelectronic devices able to manipulate light at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...